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Abstract

This paper provides a theoretical and empirical analysis of the distribu-
tion of GDP at city level (henceforth referred to as gross metropolitan product,
GMP) with the aim of bridging the gap betwen the literature on agglomeration
economies and the city-size distribution. We show that 1) it shares the same
characteristics to the city-size counterpart: They are both fat-tailed, and 2) a
1% increase in employment leads to a 1.117% (or 1.180% in theory) increase
in GMP. Free mobility of household forces a city to operate at the size where
scale economies are present, or else, the city cannot offset the reduced housing
consumption and increased congestion due to crowding set off by agglomera-
tion economies, and loses its population and GMP to elsewhere. We establish a
production economy model to break down the interplay above and derive the
equilibrium GMP distribution, which tests well with the US data on GMP.

Keywords: Zipf’s Law, Gibrat’s Law, GDP by City, Production Economy
JEL classification: D51, E2, R12

1 Introduction

Why and how do cities exist? And if they do, then why and how do they come in
different sizes? These questions have attracted a lot of interest among researchers
both in economic and geographical fields. The answer to the first question is eval-
uated with GMP in each city, while the second question calls for the analysis of
the overall distribution of city sizes. We now have a growing understanding of
GMP and the size distribution of cities, separately. These questions are integrally
related but the intersection of the two, the distribution of GMP, has never been an-
alyzed to this date. The analysis is of significant importance for both the city-size
distribution and agglomeration economy literature.

Four out of five people live in cities, and they do so for various reasons, i.e.
better job prospects, decent wage, urban amenities, or family obligations. The re-
sulting size distribution of cities has kept the rapt attention of researchers, creating
a long line of work on the subject. Whereas a size distribution is something of note,
the story does not end or complete there. The overriding research objective in the
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literature is the welfare implication of the city-size distribution. No one moves in
or out of a city just for the sake of making its size larger or smaller, nor does the
city size itself feed its population. We move to a city because we think it is big
(or small), but deep down, what we have in mind is not the size itself but what
the size has to offer, i.e., other economic factors that differ city to city such as GMP,
which correlates with the income and job opportunities in a city. Thus, the city-size
distribution needs to be understood, and validated, in tandem with other spatial
distributions.

As for agglomeration economies, the GMP of a city is not completely indepen-
dent from other cities’ GMP. GMP requires factors of production and some of them
need to be brought in from somewhere else. And since inputs cannot simply fall
off the sky, the distribution of GMP needs to be closely monitored when we study
the agglomeration economies of any city.
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Figure 1. GMP per capita in 2010 (in 2005

USD).

Our major findings are as follows.
First, two empirical regularities on
the city-size distribution carry over to
GMP. Most of GDP are generated in
only a few cities, just as the city-
size distribution, the regularity known
as Zipf’s law ([Gab99], [Dur07]). In
fact only 20% of cities create as much
as 79% of urban GDP.1 GMP has a
lower Pareto coefficient than its city-
size counterpart. Its tail end is even
heavier than the city-size distribution.
Gibrat’s law also extends to GMP. Ur-
ban economic growth rates are inde-
pendent of the size of GMP. Second,
GMP exhibits increasing returns to em-
ployment. New York’s GMP is larger
than any other city’s, even size for size. This is consistent with our first finding
that the GMP distribution has a heavier tail than the city-size distribution. We
build a production economy model and establish that agglomeration economies
are due to the trade-off between externalities and housing consumption. We prove
that, as a direct result of free mobility, the equilibrium city size has to be such that
an additional resident will reduce a housing lot size in the city but make up for it
by raising citywide productivity.

In the existing city-size models, with the assumption of free mobility, con-
sumers/workers will update their locations until they exhaust the locational ar-
bitrage opportunities. Thus, regardless of the city size, cities become indifferent
to consumers in equilibrium. This does not imply that workers are equally pro-
ductive or that their income will be the same across the board. In practice, per
capita GMP varies by location (cf. figure 1 and table 1). People enjoy the same util-

1 This relation is known as a 20-80 rule: 20% of agents are accountable for 80% of the results, a typical
sign that something of scale-free nature is at work.
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ity level at the end of the day,2 but what induces interurban migration depends on
GMP. Overshadowed by the consuming interest in the city-size distribution, GMP
is treated as a mere byproduct. Citywide aggregate production function is used
as an intermediate step to reach the equilibrium city-size distribution. We should
obtain the equilibrium production level in each city along with its size, but the
predicted GMP has never been verified with empirical data.

On the other hand, the first question of why cities exist is of particular inter-
est for urban economists or economic geographers because if they do not exist,
then urban economics does not exist either after all. In the light of Starrett’s spa-
tial impossibility theorem [Sta78], we know that GMP must differ from city to city
in the end, and in addition, GMP has to be large enough to offset all the nega-
tives that come with urban life, or else cities will disappear. However, it is hard
to figure out exactly where to look for the answer. Cities are the most complex
socioeconomic organisms of all. Regardless of where we seek for the root cause,
the traditional answer usually traces itself back to indivisibility. A favorable sea-
port cannot be taken apart and spread across the country for any practical use.
Neither can urban amanities, local public goods or marketplaces [BK00], [BW93].
A firm benefits by sharing with other firms in its close proximity the labor pool
[ABL07], a wide range of intermediate goods supply [FKV99] or supporting service
industries [RB88], which become less effective or economically unfeasible if they
are split apart. Positive externalities that firms in a crowded setting enjoy, such as
knowledge spillovers [Mor04], decay rapidly with distance, and thus necessitate
a significant level of dense economic activities within a narrow expanse of land
to be of any use [Kru91]. Other motivating factors for agglomeration economies
include matching [BRW06] and learning. See Duranton and Puga [DP04] for a full
review on this matter. We shall focus on the increasing returns to scale at a city
level as a driving force for the sake of deriving the GMP distribution. In any case,
the existing agglomeration literature concentrates on why cities exist but has not
considered how the resulting GDP is split.3 In fact, some of them are not designed
to address the distribution. The earlier New Economic Geography models such as
[Kru91] do not offer much insight into the distribution of economic activities be-
cause there are only two regions in the model. There has been extensive empirical
research on the subject [Sve75], [Seg76], [CS04]. Researchers typically try to isolate
economies of localization (the boost in productivity from the nearby firms in the
same industry) from economies of urbanization (the boost from the nearby firms
in the multiple industries. See [Car87] for a review). The focus is the employment
elasticity of GMP but not the distribution of GMP. Melo et al [MGN09] provide a
comprehensive summary of the empirical studies.

Related to the empirical work above and our paper is a series of work that
attempts to gauge the geographic concentration of industries [Kim95]. Our work
differs from them in the following sense: The indices employed in these analyses
are of the first [Kru91] or the second moment [EG94] of the distribution in na-

2 Cities are put in equilibrium either by equating wage (e.g., [Dur07]) or utility level (e.g., [Gab99]).
3More recently, Caliendo et al. [CPRHS14] looked into the distribution of economic activities at the US

state level to see how local level productivity changes affect the overall economy.
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ture. As such, they are effective in addressing the degree of concentration for the
observed distribution of economic activities, but they cannot examine the distribu-
tion itself: Low-order moments throw away lots of information on the distribution.
Two distinct distributions, for example, one right-heavy and the other left-heavy,
may end up with the same concentration index (we will show later that the GMP
distribution is right heavy).

Be it elasticity or concentration, why has the agglomeration literature not paid
attention to the distribution of GMP as much as the city-size distribution literature
has to the distribution of city sizes? There seem to be at least two interrelated
reasons. One of the reasons is the endogenous nature of the constraint that models
of agglomeration economies have to follow. When the city size is in decline, it is
obvious that there is a net outflow of people and those who left the city should be
accounted for in the city they moved to. People simply cannot disappear. There
is a simple one-to-one correspondence: One city’s gain is another city’s loss by
the same exact number of people. Thus, it stands to reason that the researchers
are keenly aware of the size distribution of cities as a necessary step to analyze
individual city sizes. On the other hand, when the GMP is in decline, it is not
as apparent or easy to locate where the lost output went as to track where people
moved to. Unlike population, GMP does not have to add up to a fixed number
and it can simply disappear in a flash. The sum of GMP (namely, GDP) depends
on how the resources are allocated among the cities. For example, if we empty
New York City and relocate all New Yorkers to other existing cities evenly, the
total population of the US is still the same but GDP will be smaller. We tend
to overlook the distribution of GMP in the absense of the GDP constraint, but
that does not necessarily mean that a city can have an economic growth without
affecting GMP of other cities. In fact, most models incorporate the substantial role
that free mobility plays in characterizing the nature of agglomeration economies.
For instance, Henderson [Hen86] states ”On an aggregative level, resources are in
some sense more productive in large cities — otherwise large cities with their high
costs of living could not pay the high wage necessary to attract resident.” (p.48).
However, the notion has never been explicitly tested. The distribution of GMP is
necessary to fully examine the nature of agglomeration economies as it describes
how the arbitration of free mobility played out in the end.

The other reason is the nonexistence of the established empirical distribution of
GMP itself. The city-size distribution is well-documented and its remarkable con-
formity to Zipf’s law is both time- and country-invariant [Soo05]. Thus, a model
of the city-size distribution will be immediately discarded if it leads to something
other than Zipf’s law, such as a degenerate distribution.4 The same requirement
would go for models of agglomeration economies if the empirical GMP distribu-
tion were proven to be robust. However, we did not know what the empirical GMP
distribution looks like, and consequently, there has never been an immediate need
to check a model’s relevance to the reality in the distribution department.

4It needs to be stressed, however, that compliance to Zipf’s law is merely a necessary condition for a
model to be successful but not a sufficient condition. The same principle applies to modelling of the GMP
distribution.
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We intend to contribute to both agglomeration economy and city-size distribu-
tion literature in the following way: We will make it explicit how the free mobility
of consumers endogenously gives rise to agglomeration economies. In addition
(and as a consequence), we will derive the equilibrium GMP distribution, which
provides an additional layer of empirical validity to test the models of the city-size
distribution.

The remainder of the paper is organized as follows: Section 2 investigates into
the nature of GMP distribution and provides descriptive statistics on GMP along
with city size. In section 3, we introduce a spatial production economy model
to explain the findings in section 2 before we empirically evaluate our model’s
performance in section 4. Section 5 concludes our study.

2 GMP Actualities

We start off with a casual observation of GMP and then establish Zipf’s and
Gibrat’s law for GMP. After that, we will identify the relationship between GMP
and city size.

2.1 Data Description

The US Bureau of Economic Analysis reports annual GDP by metropolitan statis-
tical area (MSA) along with the US GDP and estimated employment. Descriptive
statistics for the data employed are in table 1.

The data set we use is more inclusive than previous studies. There are 366 cities
with accompanying GMP figures. The largest sample size used so far to test GMP
is 30 by Mion and Naticchioni [MN05] (See [MGN09] for a full list of papers in
this field).5 For example, MSA’s like Beaumont-Port Author MSA, TX (population
388,745 as of 2010) are too small to be included in the data set in [Seg76]. At the
time of writing, the GMP of a city smaller than the 366th largest city (Palm Coast,
FL with the GMP of $1,132 million) is not reported.

Let us start with the distribution of GMP. Figure 2 (in color) is a map of the
United States with MSA’s colored according to their population density and GMP
in 2010.6 Figure 2(a) comes with no surprise. It is well documented that the city-
size distribution is tail heavy. What is newsworthy is figure 2(b). GMP shares the
same pattern to city size in terms of distribution. Figure 3 represents the probabil-
ity density function (PDF) and rank-size plot of GMP in 2010. New York accounts
for the lion’s share of GDP, followed by Los Angeles, and there are lots of mid-sized
cities that are dwarfed by the high-ranked cities.

5 The aforementioned study [Seg76] has 58 locations but output is limited to the manufacturing sector
rather than GMP as a whole. These studies often quote census for manufacturers alone.

6Population data also include micropolitan statistical area along with MSA. For definition of MSA, see
http://www.census.gov/population/metro/about/.
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Data Employment GMP GMP per capita GMP growth

Unit MSA Million 2005 USD 2005 USD Annual rate
Year 2010 2010 2010 2010 over 2005
Coverage (MSA/USA) 84.90% 87.60% 87.60% 87.60%

Largest city #001 New York #001 New York #001 Midland, TX #001 Midland, TX
Largest size 18,919,787 1,147,160 89,350 11.60%

73rd largest city #073 Akron, OH #073 Worcester, MA #073 Waterloo, IA #073 Dallas, TX
Size share of #1-73 71.80% 78.75% 29.40% N/A

City near arithmetic mean #072 North Port, FL #063 Madison, WI #150 Greenville, SC #171 Topeka, KS
Arithmetic mean 707,308 31,763 36,002 .49%

Median city #183 Laredo, TX #183 Bellingham, WA #183 Gainesville, FL #183 Monroe, LA
Median size 251,539 8,414 34,048 .35%

Smallest city #366 Carson City, NV #366 Palm Coast, FL #366 Palm Coast, FL #366 Lake Charles, LA
Smallest size 55,212 1,132 11,793 -5.98%

Standard deviation 1,582,442 86,824 11,257 .0212
Skewness 6.669 7.500 1.409 .9088

City near geometric mean #149 Naples, FL #154 Kalamazoo, MI #178 Mobile, AL N/A
Geometric mean 321,416 11,078 34,460 N/A

Mean of log value 12.68 23.13 10.45 N/A
Standard deviation of log value 1.062 1.216 .2920 N/A
Skewness of log value 1.109 1.103 .2251 N/A

Table 1. Descriptive Statistics. The statistics above the line (shaded in blue) are related to a
linear scale and below the line (shaded in green) are related to a log scale. The mean of log
value is same as the log of geometric mean. The first 73 cities make up for the upper 20% of
the total number of cities.

2.2 Gibrat’s Law for GMP

Next, we look into the dynamics: Does a large GMP make a city grow fast? The
answer: No. Gibrat’s law implies that the size of a city does not have any bearing
on its growth rate. The city-size distribution is known to follow it well ([IO03]).
It turns out that GMP does the same. We carried out both parametric (below)
and non-parametric estimations (in appendix A.1) following [Eec04] to examine
the relationship between GMP and GMP growth rate.

First, we regress GMP growth rate on GMP. We gathered data from 2005 and
2010 to compute growth rates. GMP is defined by the geometric mean Y B√

Y05Y10, assuming exponential growth. Estimates are reported in table 2. Figure 4(a)
seems to indicated that the regression line is pulled upwards partly because of New
York.7 To counteract this sensitivity to predominantly large cities, we regressed
GMP on the log of GMP as well (figure 4(b)).

The null is not rejected at the 5% level of confidence on GMP or on the log
thereof. The estimates seem to agree with Gibrat’s law. Non-parametric estimation

7 The coefficient on GMP may well have been negative had New York’s growth rate been negative. The
estimates’ dependence on New York is not all that welcoming because, while it is large, New York is still
just one observation as much as Beaumont, TX is.
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(a) Population Density in 2010 (persons/km2).
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(b) GMP in 2010 (in 2005 USD).

Figure 2.
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(a) PDF of GMP. Dots are size proportionate to GMP.
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(b) PDF of GMP in log scale.

Figure 3. PDF plots of GMP. See table 1 for the explanation of the selected cities above.

essentially shadows the result above. See appendix A.1 for details and analysis on
variance.
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Regressor R2 Figure

Intercept GMP log(GMP)

Coefficient 4.482e-03 6.981e-15 8.077e-04 4(a)
t-statistic 3.84 .54

Coefficient -2.373e-02 1.230e-03 5.044e-03 4(b)
t-statistic -1.13 1.36

Table 2. Ordinary least squared (OLS) estimate of growth rate.
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(a) OLS over GMP.
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(b) OLS over log of GMP.

Figure 4.

2.3 Zipf’s Law for GMP

As we have seen in figure 3, GMP seems to be well traced by a power law. OLS
estimation confirms the power-law behavior of GMP, as documented in table 3

and figure 5. The Pareto exponent is -.9003 on employment,8 whereas we have

Regressor R2 Figure

Intercept log(Employment) log(GMP)

Coefficient 16.34 -.9003 .9763 5(a)
t-statistic 174.57 -122.50

Coefficient 23.13 -.7875 .9756 5(b)
t-statistic 152.89 -120.58

Table 3. Rank-size and rank-GMP regression

-.7878 on GMP. This is indicative of the fact that the GMP distribution is even more
skewed than the corresponding city-size distribution. This is to be theoretically
verified with proposition 3.2.

We include OLS just for illustration, with the caveat that it would not work
had we had the extensive data. As pointed out by Gabaix and Ioannides [GI04],
the city-size distribution does not sit well with the assumptions on errors in OLS

8Employment data are based on population estimates that the Bureau of Economic Analysis uses to
compute per capita GMP.
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Figure 5.

estimation. The same criticism applies to the GMP distribution as well. In addi-
tion, due to the limited data range, it is likely that Zipf’s law applies only to the
upper tier and that the untruncated GMP distribution deviates from Zipf’s law for
small cities (cf. [Eec04]). In this case, a distribution other than a Pareto distribu-
tion, such as a lognormal or double Pareto lognormal [GZS10], is an apt choice to
describe the data. Unfortunately, an exhaustive data set is not available for GMP.
In the absence of the lower end of the distribution, Zipf’s law can be used to de-
scribe the remaining mid to upper end of the distribution. Nevertheless, we will
explain the GMP distribution both theoretically (in section 3.2.1) and empirically
(in section 4.1) without OLS. The case in point is not whether Zipf’s law describes
the upper end of the distribution in particular but that the GMP distribution has a
fat tail.

2.4 City Size and GMP

Figure 6 shows the relationship between working population and the aggregate
product in a city. There seems to be a log-linear relationship between them with
coefficient slightly but statistically significantly greater than one, indicating that
increasing returns to scale are at work between city size and GMP. Table 4 reports
the results with figure 6.9 Our numbers are not too far off from the findings from
the ones found in the literature. For example Shefer [She73] finds that a 1% rise in
input will results in a 1.12% increase in output (note, however, that this is just for
the primary metal industry, whereas our numbers are for GMP).

9Note that
log(Y/L) = γ0 + γ1 log L ⇒ log Y = γ0 + (γ1 + 1) log L

on a per-capita basis. On aggregate level, log Y = β0 + β1 log L so that γ1 = β1 − 1, as can be seen in table 4.
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Zipf’s Law for Gross Metropolitan Product

Regressand Parameter Value Intercept Employment log(Employment) R2 R̄2 Fig.

GMP Actual Coefficient -6.492e+09 5.409e+04 .9717 .9716 6(a)
t-value -7.75 111.81

log(GMP) Actual Coefficient 8.960 1.117 .9528 .9527 6(b)
t-value 54.02 85.73

t-statistic 4.79 -4.81
log(GMP) Theoretical Coefficient 8.165 1.180 .9498 .9497 6(b)

t-value 47.74 87.79
GMP per capita Actual Coefficient 3.422e+04 2.522e-03 .1257 .1233 6(c)

t-value 56.69 7.23
log(GMP per capita) Actual Coefficient 8.960 .1173 .1821 .1799 6(d)

t-value 54.02 9.00
t-statistic 4.79 -4.81

log(GMP per capita) Theoretical Coefficient 8.165 .1800 .1302 .1278 6(d)
t-value 47.74 13.39

Housing Actual Coefficient -1.736e+09 8489 .9571 .9569 6(e)
t-value -9.88 84.60

log(Housing) Actual Coefficient 4.149 1.305 .8769 .8765 6(f)
t-value 11.98 47.81

t-statistic -4.57 4.59
log(Housing) Theoretical Coefficient 5.732 1.180 .8688 .8684 6(f)

t-value 16.03 41.88

Table 4. R̄2 is an adjusted value of R2. For t-value, the null is coefficient equals zero, whereas
for t-statistic, the null is coefficient equals theoretical value. Section 4.2 explains theoretical
value.

3 Model

3.1 Spatial Production Economy

We construct an intercity general equilibrium model to seek a comprehensive ex-
planation for all the empirical findings in section 2. In particular we develop a pro-
duction economy with three commodities: composite goods, housing and leisure,10

and two types of agents: worker/consumer and landlord.
There are I cities in the economy. Si residents live in city i, totalling S =

∑I
i=1 Si

of urban population nationwide. Each city has a demographic composition similar
to the Alonso model (cf. Berliant and Fujita [BF92]). See figure 7 for one example
representation of agents involved in this production economy. In each city lives
a landlady who owns all the area H in city i. She is retired and lives off her
rental income riH, where ri marks the city’s rental rate (think of her as the first
settler in town or a developer). She is an immobile11 landlady and assumed to
consume only composite goods and leisure out of one unit of time she is endowed
with.12 The remainder of the urban population are mobile, active and identical

10Alternatively, we can include capital goods but due to the lack of data, we limit ourselves to three
goods in this economy. See appendix A.2 for how capital stock is dealt in the literature.

11 We assume that she cannot change her city of residence so that we can count the rental income toward
GMP where it is collected. Otherwise, city i’s rental income may show up in city j. However, we will not
count her toward Si for notational ease. We will return to the role of her location choice in section 4.2.

12 She lives in a special lot designated for a landlady within the city but outside H to keep our analysis
tractable. She cannot be an absentee landlady because of footnote 11.
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(c) OLS GMP per capita
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(d) OLS GMP per capita (log)

0 0.5 1 1.5 2

x 10
7

2

4

6

8

10

12

14

16

18
x 10

10

#
4

 H
o

u
s

to
n

 

#
3

 C
h

ic
a

g
o

 

#
2
 L

o
s

 A
n

g
e

le
s
 

#
1
 N

e
w

 Y
o

rk
 

Employment

H
o

u
s

in
g

 (
in

 2
0

0
5
 U

S
D

)

0 0.5 1 1.5 2

x 10
7

2

4

6

8

10

12

14

16

18
x 10

10

#
4

 H
o

u
s

to
n

 

#
3

 C
h

ic
a

g
o

 

#
2
 L

o
s

 A
n

g
e

le
s
 

#
1
 N

e
w

 Y
o

rk
 

Employment

H
o

u
s

in
g

 (
in

 2
0

0
5
 U

S
D

)
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Figure 6.

workers/consumers who supply labor li
R out of one unit of time they are endowed

with to produce a basket of goods ci
R that includes all the goods and services other

than housing hi
R and leisure (1− li

R). Their consumption bundle xi and endowment
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Zipf’s Law for Gross Metropolitan Product

ei are given by

xi
R =


ci

R

hi
R

1 − li
R

 , xi
L =


ci

L

hi
L

1 − li
L

 , ei
R =


0

0

1

 , ei
L =


0

H

1

 ,
where subscript R denotes a representative working Resident and L denotes the
Landlady.

On the production side, there are many firms in a city who employ one worker
each and produce the identical immobile commodity in a perfectly competitive
environment. The production plan 2i of a representative firm in city i is given by

2
i =


f (li

F, hi
F ; Si)

−hi
F

−li
F

 ,
where li

F denotes labor demand and hi
F denotes land input used as a production

site. We let the production function f (·) depend on the city size Si to allow for
externalities within the city such as knowledge spillover effects (as evidenced by
[Hen03] for example) or congestion to have an impact on productivity of individual
firms operating in the same city.13

Intracity production economy in city i is identified by

Pi B
{(

Xi
N, ≽N, ei

N

)
N∈{R,L}

, Yi
F

}
,

where Xi
N B R

3
+ is a consumption set of a representative worker or the landlady,

≽N is a complete preorder over consumption set Xi
N, and Yi

F is a production set of
a representative firm given by

Yi
F B

{
2

i = (ci
F, h

i
F, l

i
F)′ ∈ R3

+ : ci
F ≤ f (li

F, hi
F; Si)

}
.

A feasible allocation in Pi is defined as follows:

Definition 3.1: Feasible Allocation

For given Si ∈ [0,S], an allocation (xi
R, x

i
L, 2

i) ∈ Xi
R × Xi

L × Yi
F in the intracity production

economy Pi is feasible iff
xi

RSi + xi
L = 2

iSi + ei
RSi + ei

L. (1)

To find GMP we need to compute the value of each commodity. Let pi B(
1, ri, wi

)′
be the price on a composite good, housing lot and leisure. We take

composite goods as a numéraire.14 There are two equivalent ways to define GMP.
From the production point of view, GMP Yi is defined by the total value of all the
final goods and services produced in the city, Yi = pi ·

(
2i + ei

RSi + ei
L

)
. From the

consumers’ end, GMP is the sum of all the expenditures on goods and services,
Yi = pi ·

(
xi

RSi + xi
L

)
. They come out to the same number due to Walras’ law.

13 Since we bundle all the goods in a single basket, there is no distinction between localization economies
and urbanization economies in our model. An empirical study by Henderson [Hen86] supports the former
whereas Carlino [Car79] supports the latter. Melo et al [MGN09] conclude that it all depends on the nature
of the data employed and the type of the industry studied.

14Note that none of the commodities are tradable beyond the city border in this economy.
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Definition 3.2: GMP
GMP in the intercity production economy Pi of size Si is identified by

Yi B pi ·
(
2

i + ei
RSi + ei

L

)
= pi ·

(
xi

RSi + xi
L

)
. (2)

In application, GDP does not count leisure time. We consume leisure for the
price of the opportunity cost (namely, lost wage), but in practice there is no ex-
plicit/accounting trace of market transactions for the consumption of leisure to
track down the leisure portion of GDP. In particular we produce and consume
wi

{(
1 − li

R

)
Si +

(
1 − li

L

)}
worth of leisure, but this part is excluded from recorded

GDP and by extension, from GMP as well.15 Thus, we shall redefine Yi with only
the first two entries and take out the last entry (leisure)

Yi B

1

ri

 · ci
R

hi
R

 Si +

ci
L

hi
L

 = 1

ri

 ·  f (li
F, hi

F ; Si)

−hi
F

 Si +

0

0

 Si +

 0

H

 (3)

for statistical purposes.
As we understand from our empirical findings in section 2, Yi exhibits increas-

ing returns to scale Si. Then according to (3), individual profit f
(
·; Si

)
− rihi

F needs
to be increasing in Si so that Yi is convex in Si.

To find the equilibrium price vector, first define θi B (θi
R, θ

i
L) as a vector of a

representative resident and landlady’s share of profit (θi
R, θ

i
L ∈ [0, 1] and θi

RSi+θi
L =

1).

Definition 3.3: Intracity Equilibrium

For a given θi and ei, an intracity equilibrium in city i with Si > 0 is a feasible allocation(
xi

R
∗
, xi

L
∗
, 2i∗

)
and price vector pi∗ such that

1. For N = R and L
pi∗ · xi

N
∗ ≤ pi∗ · ei

N + θ
i
Npi∗ · 2i∗Si. (4)

2. For N = R and L

pi∗ · xi
N ≤ pi∗ · ei

N + θ
i
Npi∗ · 2i∗Si ⇒ xi∗ ≽N xi, (5)

for any xi
N ∈ Xi.

3. For any 2i ∈ Yi
F,

pi∗ · 2i∗ ≥ pi∗ · 2i. (6)

To identify the equilibrium city size, let the intercity production economy P B{(
Pi,Si

)I

i=1
, S

}
and define

Definition 3.4: Intercity Equilibrium

For a given ownership matrix
(
θi

)I

i=1
∈ [0, 1]2I and endowment matrix

(
ei
)I

i=1
∈∏

i

(
Xi

R × Xi
L

)
,

an intercity equilibrium in the production economy P is a list of a feasible allocation matrix(
xi

R
∗
, xi

L
∗
, 2i∗

)I

i=1
∈ ∏

i

(
Xi

R × Xi
L × Yi

F

)
, price matrix

(
pi∗

)I

i=1
∈ R3I

+ , and size distribution(
Si
)I

i=1
∈ [0, S]I such that for any i and j with Si > 0 and S j > 0,

15 We use the data provided by the US Bureau of Economic Analysis, and their figures are based on tax
reports. We do not pay tax on leisure.
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1.
(
xi

R
∗
, xi

L
∗
, 2i∗, pi∗

)
is an intracity equilibrium

2.
xi

R
∗ ∼R x j

R

∗
. (7)

3. Urban population adds up to ∑
i

Si = S. (8)

The second item (7) is due to free mobility of workers. This does not apply to
landladies, who are locked in their place of residence to keep the housing portion
of GMP where it is generated.

The equilibrium city-size distribution is the size component of an equilibrium
in P and the GMP distribution is (3) computed with an equilibrium in P.

3.2 Application
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Figure 7. Commodity flow. Leisure is ex-
cluded in accordance with the practical defi-
nition of GDP adopted by the US Bureau of
Economic Analysis.

To derive the exact distribution of
GMP for empirical testing, consider an
application of the spatial production
model developed in section 3.1 with
production function and labor mar-
ket in the style of Eeckhout [Eec04]
with the explicit presence of landladies
(see figure 7 for a schematic represen-
tation of the agents and commodities
involved in this example). We will find
the analytical solution to the intercity
equilibrium, from which we obtain the
equilibrium GMP distribution.

3.2.1 Intracity Equilibrium

To start off, pick any city i and con-
sider its intracity equilibrium. Firm’s
production plan is specified by

f
(
li
F, hi

F; Si
)
= Aia+

(
Si
)

a−
(
Si
)

li
F, (9)

where Ai is a stochastic citywide productivity parameter, a+(·)(> 0) measures the
positive externality shared among the firms operating within the same city, and
a−(·)(∈ (0, 1)) measures congestion externality. On the plus side, city size is as-
sumed to raise the productivity of all the firms operating in the city. Positive ex-
ternality enhances with size (a′+(·) > 0). On the downside, whereas each consumer
supplies li

R units of gross labor, congestion externality adversely affects effective
labor. The fraction 1 − a−(Si) of labor hours will be spent on commuting rather
than on production. The level of reduction in effective labor aggravates with the
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size of a city (a′−(·) < 0).16 Firms do not pay for the time lost in commuting and
workers assume responsibility for the time cost of commuting. That is, firms will
pay (ostensible) wages at the rate of ωi only for the fraction of li

R when their worker
is present at work, i.e., only for a−

(
Si
)

li
R hours out of li

R. On an hourly basis, (effec-

tive) wage is knocked down to wi
(
Si
)
B ωia−

(
Si
)

for each hour devoted for work,
inclusive of commuting time.17 We will discuss the role of landlady’s labor supply
later. We assume that firms do not require land as input in accordance with [Eec04]
for simplicity, but land can readily be incorporated into our production economy
in section 3.1 as a factor of production.

Profit (6) turns into

pi · 2i = Aia+
(
Si
)

a−
(
Si
)

li
F − ωia−

(
Si
)

li
F =

[
Bi

(
Si
)
− ωia−

(
Si

t

)]
li
F, (10)

where Bi(Si) B Aia+
(
Si
)

a−
(
Si
)
. Since production function (9) exhibits constant

returns to scale in li
F,

pi · 2i∗ = 0 (11)

in equilibrium (otherwise 2i∗ violates profit maximiation condition (6)). Hence, if
li
F > 0, it must follow that

Bi(Si) = ωia−
(
Si
)

(= wi
(
Si
)
) (12)

in equilibrium.
Note here that aggregate production may exhibit agglomeration economies due

to positive externality a+(·), but internal scale economies are still absent because
individual production function is linear in li

F. For more on a dialectic between
increasing and constant returns to scale, see Rossi-Hansberg and Wright [RHW07].

Next order of business is the consumers. Represent ≽R in Pi by

uR

(
ci

R, h
i
R, l

i
R

)
= α log ci

R + β log hi
R + γ log

(
1 − li

R

)
, (13)

where α, β, γ > 0, and assume α + β + γ = 1 without loss of generality. According
to the feasibility condition (1) household income is given by pi · ei

R+θ
i
Rpi ·2iSi. Since

firms earn zero profit (11), household income simplifies to labor income pi · ei
R =

wi
(
Si
)
· 1 alone, with which to buy composite goods ci

R, housing hi
R and leisure(

1 − li
R

)
at the price of pi =

(
1, ri, wi

)′
. Marshallian demand is

xi
R

(
pi,wi

)
=


ci

R

(
pi,wi

)
hi

R

(
pi,wi

)
1 − li

R

(
pi,wi

)
 =


αwi

(
Si
)

βwi
(
Si
)
/ri

γ

 =

αBi

(
Si
)

βBi
(
Si
)
/ri

γ

 (14)

The second equality holds as a result of profit maximization (6) and its consequence
(12). Labor supply li

R of a typical household will be 1 − γ = α + β. Material balance

16Commuting may be embedded through a specific intracity structure such as a monocentric city model
[Alo64]. Since we just need it to work as a dispersion force in each city, we summarized commuting in a
single function a−(·) for our purpose.

17 Hence, the opportunity cost of leisure is wi
(
Si

)
rather than ωi.
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(1) requires that
(
1 − li

R

)
Si + 1 − li

L = −li
FSi + 1 · Si + 1. Since utility maximization for

the retired landlady (5) results in li
L
∗
= 0 in this economy (see (17) below), li

R
∗
= li

F
∗,

which furthermore implies that the equilibrium production plan will be

2
i∗ =


f
(
li
F, hi

F; Si
)

0

−li
F

 =

(α + β)Bi

(
Si
)

0

−(α + β)

 . (15)

Turning to the landlady, represent ≽L in Pi by

uL

(
ci

L, hi
L, li

L

)
= ci

L1{liL=0}
(
li
L

)
, (16)

where 1{liL=0}(·) is an indicator function that takes the value of one when li
L = 0

and zero otherwise. Since she is retired, any hour of labor li
L > 0 will instantly

push her utility level down to zero regardless of an increment in her utility level
from an increased consumption of composite goods financed through her labor
income.18 That is, her utility level is nonnegative over the plane li

L = 0 in R3
+ and

zero elsewhere. Once again, since the share of zero profit (11) earns her nothing,
the budget constraint (4) implies that the landlady’s income is pi · ei

L = riH +wi
(
Si
)
.

Her Marshallian demand is

xi
L

(
pi,wi

)
=


ci

L

(
pi,wi

)
hi

L

(
pi,wi

)
1 − li

L

(
pi,wi

)
 =


riH

0

1

 . (17)

Then residential utility maximization (14), profit maximization (15) and land-
lady’s utility maximiation (17) rewrite feasibility condition (1) as

αBi
(
Si

R

)
βBi

(
Si

R

)
/ri

1 − (α + β)

 Si +


riH

0

1

 =

(α + β)Bi

(
Si
)

0

−(α + β)

 Si +


0

0

1

 Si +


0

H

1

 . (18)

from which, along with the first order condition (12), we can find the equilibrium
price vector in city i as

pi∗ =


1

ri

wi

 =


1

βBi
(
Si
)

Si/H

Bi
(
Si
)

 (19)

(see figure 7 to trace the commodity flow in equilibrium over Pi). Observe that
the rent ri goes up if 1) city i draws a good technological shock Ai, 2) positive
externality a+

(
Si
)

intensifies, or 3) city i becomes less crowded (a−
(
Si
)
). Likewise

the leisure becomes expensive for the same reasons. Reasons 2) and 3) are triggered
by urban growth, whereas reason 1) is independent of Si.

18Alternatively, we could model her as an active worker, which complicates our notations without much
gain in insight.
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It is worth pointing out that our economy makes a judicious use of limited la-
bor. The working population is capped at S. The intracity equilibrium and more
noticeably, the intercity equilibrium, allocate more people to a city with a good
production environment and pull back labor from a city of low productivity. Res-
idential indirect utility is increasing in Bi

(
Si
)

in equilibrium (see section 3.2.2 be-

low). Migration dynamics are such that there is an inflow when Bi
(
Si
)

is above the
national average and an outflow if it is below. The economy has an auto-correcting
mechanism built into it: If population allocation ever deviates from the equilib-
rium, it creates an economic incentive for people to move to a productive city.19

With feasibility condition (18) and the equilibrium price (19) we obtain GMP
(2) in equilibrium as follows:

Yi = pi∗ ·
(
xi

R
∗
+ xi

L
∗)

= (α + β)B
(
Si
)

Si + βB
(
Si
)

Si︸                           ︷︷                           ︸
Reported portion of GMP Yi (3)

+B
(
Si
) (
γSi + 1

)

= (1 + β)B
(
Si
)

Si + B
(
Si
)
.

(20)

On the second line in (20) are the values of composite goods, housing and leisure
for each. Only the first two are included in the reported GMP.

Equilibrium GMP (20) leads to the following:

Proposition 3.1: Citywide Scale Economies in Intracity Economy

Consider the equilibrium in an intracity economy Pi. The reported portion of GMP Yi

exhibits increasing returns to scale Si iff Bi
(
Si
)

Si exhibits increasing returns to scale Si.

Proof. Apparent from (20). �

In reference to section 2.4, observed data seem to suggest that positive external-
ity does outstrip negative externality. However, as we will see in proposition 3.2,
citywide scale economies in intercity equilibrium will be positive without specifi-
cally assumed increasing returns to scale on Bi

(
Si
)

Si.

3.2.2 Intercity Equilibrium

To find the intercity equilibrium in definition 3.4, rewrite indifference principle (7)
in terms of a utility function (13) so that indirect utility u

(
xi

R
∗)
= u

(
x j

R

∗)
for any i

and j with Si, S j > 0. This leads to

Bi
(
Si
) (

Si
) −β
α
= B j

(
S j

) (
S j

) −β
α C K, (21)

where K is a location-invariant constant. According to (20), GMP is Yi = (1 +

β)K
(
Si
) β
α+1
+ K

(
Si
) β
α and the reported portion of GMP will be

Yi = (α + 2β)K
(
Si
) β
α+1

(22)

19 The allocation of labor is still not efficient though, due to externalities.

17



Zipf’s Law for Gross Metropolitan Product

in the neighborhood of the equilibrium size, which breaks down into compos-

ite goods production/consumption of (α + β)K
(
Si
) β
α+1

and housing production/

consumption of βK
(
Si
) β
α+1

. Note that productivity parameter Ai no longer makes
an explicit appearance in (22) but GMP is still positively related to it: A high value
of Ai is reflected in Yi through increased Si. Now we have

Proposition 3.2: Citywide Scale Economies in Intercity Economy

If an intercity economy P is in equilibrium, the reported portion of GMP Yi exhibits in-
creasing returns to size in the neighborhood of equilibrium size Si.

Proof. Immediate from (22). �

In comparison to proposition 3.1 it is curious that we have to assume Bi
(
Si
)

Si

to be increasing returns to scale only in Pi but not in P. The short answer to this
enigma is that free mobility puts the city size where scale economies are at work.

For illustrative purposes, assume that a+
(
Si
)

a−
(
Si
)

takes the form
(
Si
)δ(Si)

. Then

proposition 3.1 specifically requires δ
(
Si
)
> 0 in Pi but proposition 3.2 does not

because perfect mobility will bring δ
(
Si
)

above zero anyway. Now assume that P
is in equilibrium. Suppose that in some city i, size Si rose by one (call this new res-
ident Axel). In this case, housing consumption will be reduced in the city because
residents have to make room for Axel’s house out of a fixed supply H of land,
and he also exacerbates congestion in the city. However, since P is in equilibrium,
reduction in utility level from curtailed housing consumption needs to be offset by
either ci

R or li
R in compliance with utility equalization (7). Since li

R is independent of
size (i.e., leisure consumption does not and cannot accommodate the change to the
city residents introduced by Axel), compensation must be made through increased
consumption in ci

R alone. Then the question becomes: Can he produce enough
composite goods to leave everyone in city i on the same indifference curve?

It is the answer to this question that yields endogenous agglomerative force

in P in equilibrium. The marginal rate of substitution between ci
R and hi

R is
β

α

ci
R

hi
R

baskets of composite goods for each ft2. Now, Axel carves
∂hi

R

∂Si =
hi

R

Si ft2 from every

resident’s lot in the city. Thus, each city resident needs to have
(
β

α

ci
R

hi
R

)
hi

R

Si =
β

α
ci

R
1
Si

more baskets to keep to the countrywide utility level (or else the current allocation
will not be an equilibrium). Then the addition of Axel into the city needs to raise
the individual production of composite goods as follows:

∂ f
(
· ; Si

)
∂Si =

β

α
f
(
· ; Si

) 1
Si

⇒ δ
(
Si
)

Ai
(
Si
)δ(Si)−1

=
β

α
Ai

(
Si
)δ(Si)−1

⇒ δ
(
Si
)
=
β

α
(> 0).

(23)
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20 If not, for example, if δ
(
Si
)
<
β
α , then Axel cannot make up for the lost individ-

ual housing unit by producing more composite goods through enhanced pooled
production externality net of the congestion externality. The knowledge spillover
effect he brings in (less the congestion externality he exerts) is not enough to render
the dwindled housing consumption tolerable for the current residents. In this case,
city i is better off bumping him out, i.e., it should reduce Si, contradicting the fact
that P is in equilibrium. And vice versa, city i should be larger if δ

(
Si
)
>
β
α . Every-

one welcomes Axel and wants more residents to move in in this case. Thus, free
mobility arbitrages the gap between externality component δ

(
Si
)

and countrywide

constant βα and forces the city to operate in the domain where scale economies are
present. Note that utility equalization (7) only applies to cities with Si > 0. If city’s
aggregate production function does not exhibit increasing returns to scale anywhere
over 0 < Si ≤ S, intercity migration will leave the city trailing behind others and
eventually turn it rural. At such a location, δ

(
Si
)
<
β
α and all the residents will be

drained off to other cities until Si shrinks to zero. Thus, increasing returns to scale
at the aggregate level are an eligibility requirement to be listed under MSA. See
appendix A.3 for further discussion on naturally occurring scale economies in P as
opposed to presumed scale economies in Pi.

Note that the preceding argument refers only to the positive aspect of intercity
resource allocation. The equilibrium P guarantees that utility level is only equalized
but not necessarily maximized. Free mobility simply assigns workers to each city
according to exogenously drawn productivity parameter Ai so as to even out the
utility level across the country. For instance, Boston may use more people to raise
its intracity utility level while New York may use fewer people to raise its intracity
utility level. Nevertheless, the city-size and GMP distribution may stay put as
long as the utility level is equalized among cities. A worker makes a location
choice based on her own utility level without reference to the boon and scar that
she leaves on existing residents’ welfare. A social planner may impose an optimal
allocation of workers to maximize, for example, a population-weighted utility level
over the country, but he will have to forgo utility equalization (7) to do so, which
may not be sustainable in practice.21

It is crucial that we unbundle housing consumption from the composite good.
Location-variant housing rent plays a vital role in the economy as we discuss in
appendix A.3. If we include housing as part of a composite good, per capita con-
sumption level, and consequently the individual production level, will be the same
across the cities because the consumption of leisure is the same everywhere and
free mobility guarantees an equal utility level. Then aggregate production level
becomes directly proportional to the city size. Alternatively, we can unbundle the
composite good and create markets for many commodities. In that case we may
have increasing returns to scale in production but the price of individual commodi-

20We took the landlady out of equation because her marginal rate of substitution between composite
goods and housing is zero. Cutbacks in housing lot do not affect her at all due to her preferences (16).

21 There have been several attempts to identify the optimal city-size distribution. There is no agreement
on the objective function to use in the literature. It can be a social utility level as we mentioned in the main
text or as in [Fuj13]. It can also be a cost of public good provision [SSW74], GMP [Suh91], or benefit from
local interaction [Tab82].
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ties tend to negate the variations in output levels and GMP will be only propor-
tional to the city size. A positive technological shock enhances the production,
which reduces the equilibrium price in a perfectly competitive market. Thus, the
value of the output will exhibit constant returns to scale, which is not compatible
with our findings in section 2.4. We will have to forgo the assumption of perfectly
competitive market in this case.

3.3 Distribution of GMP

Eeckhout [Eec04] has shown that Si follows the lognormal distribution due to the
central limit theorem. The equilibrium size of a city can be written historically as a
sum of the log of error terms over time. The city size depends on the cumulative effect of
multiplicative nature (cf. footnote 1) rather than of additive nature [LSA01], leading
to the lognormal distribution as a result of proportional growth (see appendix A.4
for details). In particular log

(
Si
)
∼ N

(
µS, σ2

S

)
. In conjunction with (22) we obtain

the following:

Proposition 3.3: GMP Distribution

The reported portion of GMP follows a lognormal distribution:

log Y ∼ N

( βα + 1
)
µs + log(α + 2β)K,

{(
β

α
+ 1

)
σs

}2 (24)

There is a log-linear relationship between GMP and city size (22) and city size
follows a lognormal distribution. Naturally, GMP also follows a lognormal distri-
bution by extension. The variance of log(Y) is inflated by β

α + 1 due to citywide
scale economies (proposition 3.2). This observation is consistent with our findings
in section 2.3. GMP (in log scale) spreads further than its city-size counterpart in
P.

Eeckhout [Eec04] also establishes Gibrat’s law
d log Si

t
dt ≈ ϵ (t denotes time. See

appendix A.4). Then from (22),

d log Yi
t

dt
=

(
β

α
+ 1

)
d log Si

t

dt
≈

(
β

α
+ 1

)
ϵi

t,

where ϵi
t is an i.i.d. random variable. Thus GMP also follows Gibrat’s law. Note,

once again, that variation in Yi is inflated by β
α + 1 and this is coherent with our

empirical findings in section 4.1.

4 Empirical Implementation

4.1 Distribution of GMP

We will put proposition 3.3 to an empirical test in this section. First, rewrite the
GMP distribution (24) as log Y ∼ N(µ, σ2). The maximum likelihood estimator of

(24) is µ̂ =
∑

log Yi

N and σ̂2 =
∑

(log Yi−µ̂)
N

2
. We report our estimations in table 5 with
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Employment GMP Housing

Data Size I 366 366 323
Censored (Unreported Cities) 0% 0% 11.75%
Censored (Unreported Value) 0% 0% 13.87%

Estimated Mean µ̂S, µ̂ 12.68 23.13 20.66
Estimated Variance σ̂2

S, σ̂2 1.128 1.478 2.133

Theoretical Variance
{(
β̂
α̂ + 1

)
σ̂S

}2
– 1.571 1.571

Log Likelihood/I .2709 .2370 .1968
Kolomogorov-Smirnov Statistic .1122 .1032 .1031

Table 5.
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(a) CDF of GMP
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(b) PDF of GMP
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(c) PP Plot of GMP
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(d) CDF of Housing
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(e) PDF of Housing
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(f) PP Plot of Housing

Figure 8.

supporting density plots in figure 8. Housing portion of GMP, βK
(
Si
) β
α+1

, is also
available and they are expected to follow the lognormal distribution as well.

The overall fit is not too far off. The maximum discrepancy between the em-
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pirical and estimated CDF (Kolomogorov-Smirnov statistic) is .1032. We are more
than certain that the fit would improve if we used an inclusive data set. Due to
truncation to the left of the distribution, the tail end of the distribution does not
extend as far as the theory predicts. GMP is not available for smaller cities.

As we will see in section 4.2, the ratio between β and α is .1800. Following the
GMP distribution (24), the theoretically expected value of σ2 is (1.180σ̂2

S)2 = 1.571
(cf. theoretical variance in table 5). Our expected variance in GMP computed from
the expected expenditure shares α and β and estimated variance σ2 in employment
is very close to the actual variance in GMP (we missed the actual value only by
5.86%). This confirms the validity of the form (24) along with the selection of the
utility and production functions in section 3.2. On the other hand, the variance on
housing is larger than the theoretical value by 35.86%. We will explore the cause
of the large gap in housing in section 4.2.

4.2 Scale Economies

According to (22), the ratio between GMP and housing is α + 2β to β. The actual
ratio is $1.162e+13 to $1.603e+12 among the MSA’s, indicating that the expenditure

share β of the housing sector is 13.23%.22 Hence, the expected ratio β̂
α̂ = .1800.

Taking a log of (22),

log Yi = log(α + 2β)K +
(
β

α
+ 1

)
log Si = log(α + 2β)K + 1.180 log Si.

The actual value of the coefficient is 1.117 in table 4 rather than 1.180, meaning that
our model overshoots the coefficient by only 5.64% (or, the economy is off where it

is supposed to be by 5.64%). The housing portion of GMP log βK
(
Si
) β
α+1

also shares
the same coefficient in (22). Here the predicted value comes short of the actual value
by 10.59%. The large discrepancy may be because of the censored data,23 or the
landlords’ or developers’ registered addresses, which may be different from the
city where they real estate is located. The fact that imputed rent is excluded and
that houses usually last longer than the duration of a fiscal year exacerbates the
deviation even further.

5 Conclusion and Extensions

There are two sets of research on the nature of geographic concentration of eco-
nomic activities: one on agglomeration economies and the other on the city-size
distribution. Despite the fact that they address the closely related questions of the
existence and size of a city, a line of communication between the two has never

22Note that GDP includes real estate sales and excludes imputed rents. Thus, the figure is related to, but
does not necessarily represent the expenditure share in a particular year.

23 Housing output values are not reported for all MSA’s and the missed portion is not negligible. For
example, housing sector in Dallas (rank #4 in employment) is censored out of the data. However, these
censored values are included in the citywide and nationwide aggregates.
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been established. We filled in the gap with the aim of making explicit the indis-
pensable role that free mobility plays in characterizing the nature of agglomeration
economies and providing an extra checking device for the models of the city-size
distribution.24

We have discovered that the GMP distribution follows the same pattern to
the city-size distribution, and we sought a systematic illustration of how our lo-
cal economies are related to their employment and output levels on a national
scale. Proposition 3.2 further revealed that GMP grows more than 1% against a 1%
growth in employment. Large cities make up for an exceeding share of GDP and
they do so more than their city size alone can account for. Consequently, due to
agglomeration economies of GMP in employment, the GMP distribution is even
more skewed than the city-size distribution.

We constructed a production economy model that endogenously gives rise to
agglomeration economies in equilibrium. The interplay between externalities and
housing consumption drives the cities to operate at the size where increasing re-
turns to scale are present. Empirical testing verifies our model’s prediction; how-
ever, the result could have been better. Due to data truncation, our predicted dis-
tribution does not trace the lower end of the distribution well. Ideally, we would
like to test our prediction with a more exhaustive data set, which, for the moment,
does not exist.

Our objective was to explain the GMP distribution in a consistent manner. As
far as we know this is the first attempt to analyze GMP as a distribution. Along the
way, we have left several prospects for future work. We assumed a single-input pro-
duction function. Local output may well be affected by capital (cf. appendix A.2),
educational attainment, location of the city, access to a rich labor pool, or urban
infrastructure, which, obviously vary from city to city. We also packed the con-
sumption goods other than housing and leisure into a single basket. In reality a
city comes with various industries. Some of them may exhibit increasing returns
to scale and some may not both within and across the industries. Cross-sectional
GMP analysis is called for to decode the internal workings of local economies that,
on aggregate, exhibit increasing returns to scale and result in a fat-tail distribu-
tion. Lastly, we assumed that all goods are immobile. Data reported by the Bureau
of Economic Analysis are based on tax filed in each MSA. As such, the scope of
GMP matches the range of production in MSA, but it does not necessarily match
the range of consumption in the city. The openness of a spatial economy may be
addressed by adding shipping firms to the production economy. One way to do
so is to assume that a shipping firm takes goods in city i as input and ”produces”
the same good in city j as output, in less than a one-to-one ratio to reflect shipping
charges of iceberg form.

24For example, Eeckhout’s model [Eec04] that we based our model on passes the test, and thus it does
not only explain the city-size distribution but also the GMP distribution.
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A Appendix

A.1 Non-Parametric Estimation of Growth Rate

We estimate the conditional expectation of GMP growth rate E[1|Y] = m(Y) with a
Nadaraya-Watson kernel estimator [Wat64]

m̂(Y) =
I∑

i=1

1
i Kh(Y − Yi)∑I

j=1 Kh(Y − Y j)
.

Y denotes GMP and 1 denotes its growth rate. Sample size is I = 366 with each
city indexed by a superscript i. Kh(·) is a scaled kernel with a bandwidth h. For
non-parametric estimation we standardize the growth rate to take out the nation-
wide growth rate, which is captured by the intercept in parametric estimation in
section 2.2. Figure 9 plots the growth rate and its kernel estimation. We tried to
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(a) Kernel regression on GMP with bandwidth h =
6.137e + 10.
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(b) Kernel regression on the log of GMP with band-
width h = .3932.

Figure 9.

estimate m̂(Y) first (figure 9(a)). The disperse spread of GMP towards the upper
end swings the estimate from side to side and makes it hard to interpret the rela-
tionship. The log of GMP in figure 9(b) seems to exhibit a more discernible pattern.
There is a slight inclination to the left and right tails, probably because of a smaller
number of observations to the both ends than in the mid range. Other than that,
our estimate seems to be in support of Gibrat’s law for GMP.

Figure 10 presents the kernel estimate of GMP growth rate. Aside from an
increase in variance in the lower mid range and decrease in the mid range, there
does not seem to be a systematic correlation between GMP and its variance in
growth rate.

A.2 Capital Stock

The two lines of work mentioned in section 1 take different approaches to theoriz-
ing about their respective target objective. The city-size distribution models based
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(a) Kernel Density Estimation

10
10

10
11

10
12

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

Geometric Mean GMP (in 2005 USD)

G
M

P
 G

ro
w

th
 R

a
te

 

 

0

5

10

15

20

25

Kernel
Density

Mean

Geometric Mean GMP (in 2005 USD)

G
M

P
 G

ro
w

th
 R

a
te

 

 

10
10

10
11

10
12

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

(b) Kernel Density Estimation. Gray line
tracks the mean.

10
10

10
11

10
12

2

3

4

5

6

7

8

9

10
x 10

−4

Geometric GMP (in 2005 USD)

V
a
ri

a
n

c
e

10
10

10
11

10
12

2

3

4

5

6

7

8

9

10
x 10

−4

Geometric GMP (in 2005 USD)

V
a
ri

a
n

c
e

(c) Kernel Estimate of Variance

Figure 10.

on general equilibrium typically do not include capital stock as part of the produc-
tion function ([Dur07], [Eec04] for example);25 whereas most agglomeration models
do. Labor alone serves its purpose to explain the actual city-size distribution with-
out involvement of capital stock. It is easy to measure a city size, but measuring
citywide capital stock is not as straightforward as a head count. In fact, there is no
data on the level of capital stock at city level in the Untied States. Those studies
that quote capital stock use the estimated level based on factors related to capital
such as local public goods, housing and state roads, mixed in with predetermined
weights [Seg76], or estimated retrospectively from the pair of labor and GDP per
capita at city level [Sve75]. Capital stock is known to be correlated with city size,
which causes a multi-collinearity problem. According to [Seg76], capital stock’s
contribution to GMP is .116 as opposed to labor’s .891. We did not test our model
on capital stock for lack of its direct measurement. Capital stock can be readily
incorporated into our model in way similar to land.

A.3 Unconditional Scale Economies

To further understand the reasoning behind proposition 3.2, conduct comparative
statics on β

α . Imagine that β goes down (or equivalently, α goes up). In intracity
equilibrium in Pi, Bi

(
Si
)

can take any value. In intercity equilibrium in P, Bi
(
Si
)

is
subject to utility equalization condition (21). As the expenditure share of housing β
decreases, we can pack lots of people in a city (because they do not care about the
lot size much) and produce lots of composite goods (which they do care about).
The story ends here in Pi. In P, it goes further. Increased city size makes the
city appealing because people are willing to swap a large parcel of land for only a
few composite goods to squeeze Axel in when β is small. People view a large city
with small houses more favorably than a small city with large houses. To offset

25There are some exceptions. For example, Rossi-Hansberg and Wright [RHW07] address city-size dis-
tribution with capital stock incorporated into the model. Even then, actual capital stock level is not used
for empirical testing.
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the rush of people into a large city, the effective wage rate (19) in the city goes
down in equilibrium to meet the shared utility level (7). Pi does not factor in the
levelling effect of the wage across the cities as much as P does. Notice that as β
becomes smaller, scale economies also weaken because the residents do not care
about housing, and they become more willing to give up their land in exchange for
even a limited increase in composite goods. The housing market is indispensable
in this sense to observe endogenously induced agglomeration economies in P.

This observation compares to a closed and open monocentric city model (cf. [Bru87]).
In a closed monocentric city, size is exogenous but utility level is endogenous just
as in Pi. In an open monocentric city, size is endogenous but utility level has to
match the national level as in P. Since the wage rate depends on city size, P picks
the levelling effect of wage but Pi does not, and therefore, we have to throw in an
additional assumption on production function in Pi.

A.4 The City-Size Distribution and Gibrat’s Law

Denote discrete time by subscript t and define Λ
(
Si

t

)
B a+

(
Si

t

)
a−

(
Si

t

) (
Si

t

) −β
α and

suppose Λ(·) is invertible in the neighborhood of equilibrium Si. Then Ai
tΛ

(
Si

t

)
= K

from (21) so that Si
t = Λ

−1(K/Ai
t). With the law of motion Ai

t = (1 + σi
t)A

i
t−1, we have

Si
t = (1 + ϵi

t)S
i
t−1, (25)

where 1 + ϵi
t B 1/Λ−1(1 + σi

t). Then

d log Si
t

dt
≈ ϵi

t,

for a small ϵ, leading to Gibrat’s law. Computing the city size recursively, (25) also
implies

log Si
t ≈ log Si

0 +

t∑
τ=1

ϵi
t,

which leads to the lognormal city-size distribution as t → ∞ by the central limit
theorem. See [Eec04] for details.
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